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On the representation of integers as the suwms
of distinet summands taken from a fixed set
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To Piofessor L. Rédei on his 60th birthday

1. Introduction

Let 9 be a sequence of distinct positive integers
G< A< A< .

We write A(n) for the number of elements a of 9 with a = n, and similarly
for other sets. As usual, we put

||x| = inf | x—n| (n==0,+1,+2...).

We shall establish the following theorem:

Theorem I. Suppose that

) lim A@2nm)—A@m) -
a>e l0glogn
and that

£) 2 ||lag|= oo

e

Jor every real number 6 in 0< 60< 1. Then every sufficiently large number is
representable as the sum of distinct elements of 9.

We prove Theorem I in §2 by the Hardy—Littlewood circle method.
It will be seen that we do not use quite the full force of the hypotheses.
By a more refined estimate of the integrals which occur, it would probably
be possible to weaken the hypotheses further.

This investigation was touched off by the ingenious paper of BIRCH [1]
about the representation of integers as the sums of the elements p“qf
(¢=0,1,2,...; 8=0,1,2,...), where p,q is a pair of coprime integers.
His results are an immediate consequence of Theorem I.
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112 J. W. S. Cassels

In §3 we shall prove the following resuli, which shows thal congrucnce
considerations and a very severe condilion on the rale of increase of A(n)
are not alone sufficient {o ensure that cvery sufficienily large number is the
sum of distinct clements of .

Thcorem II. Lef >0 be given. Then there exists a set € of positive
integers ¢, <cy < -+ with the following properties:
1
. . T-lb‘
@) lim (cupt —eu)lew  ==0;

N->»0

(ii) € conlains infinitely many elements in every arithmetic progression;

(iii) if S(n) denotes the number of integers = n which are expressible as z‘/ze
sum of distinct elements of G, then S(n)<sn for every n.

Note that (i) implies, in partlcular that

limn T *C(n) = oo.

N>

On the other hand, it is easy to see that any set A with
lim inf n-28A(n) >0

satisfies condition (%) of Theorem I provided that 9 contains infinitely many
elements not divisible by any given integer m > 1.

[Added in proof. Since this was written, my attention has been drawn
to the paper of RoTH and SzekeRes [7]. Their point of view is rather differ-
ent from mine, since they are primarily interested in the behaviour of the
number of representations. From their work it follows, in particular, that
condition (¥) may be weakened provided that condition (%) is appropriately
strengthened. They do not require such delicate estimates of integrals as are
needed in this paper.]

2. Proof of Theorem I

We shall not apply the Hardy—Littlewood method to the set A directly,
but to a subset B of A. It will clearly be enough to show that every suf-
ficiently large integer is the sum of distinct elements of 8. The set B is
constructed in Lemma 1. It should perhaps be remarked that, while we have
for convenience given explicit numerical values to constants occurring in the
argument, we have made no attempt to make those values small and have
estimated quite crudely.
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On the representation of integers 113

Lemma 1. There is a set 5N and integers M, N with 2° = N=M
such that

() > |166lp>2N+50

ey, b=V
for all real 6 in the range 27" =60 =1—2""
(if) B2""—B@2") = 2"logam (for all m = N),
(iii) B2""—B@2") =2"logs m+1 (for all m = M),

where loge m==1og m/log 2.

First, by (i) of the enunciation of Theorem I there is an integer N =24¢
such that

(1) AQ2n)—A(n) >2% logy logs n  (for all n = 2%).

Secondly, by condition (if) of Theorem I and a routine application of the
Heine—Borel covering theorem, there is an integer M = N such thal

2 |lab|p>2N+50

ae, a=eM

for all 6 in the range 27" *=0=1—2""
The elements & of the set B in the range

O<b=27

are takeun to be just the elements of 9 in that interval. The elements of %
in an interval

(2) 27n < b = 21n+1 (ﬂl = M)
are taken to be just any selection of
[2% logs m] 41

of the elements of ¥ in that interval. (That there are so many elements of 9(
in (2) follows from (1).) The set & so constructed clearly has all the required
properties. -

Let o be a number in the range

O<ox1

{o be chosen later. The number of representations of an integer n by dis-
tinct summands from & is clearly

7¢
{271;@”}—1 f b—é;[}’(l _[_ ()bezbo)e—inod 0‘
-7 A
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Hence to prove the theorem it will be enough to show that

7C
(3) | Foye-n0ao+=0
-7
for all sufficiently large n, where
1 belbo
@ roy= I (5L
pev \ 1--0
Clcarly
®) FO)| =1
for all @ and
(6) FO)=1.

We choose ¢, which is still al our disposal and may vary with n, so that
the integrand in (3) has stationary phase in the neighbourhood of 0==0,
that is so that

> b
) /z-ﬁbezﬁl 4o
This is possible since the right hand side of (7) increases continuously from
0 to oo as ¢ increases from O to 1—O0. The rest of this § 2 is devoted to
showing that (3) holds provided that

®) n > max |20, 222400} .

First we require an estimate of o. It is convenient to work with the
integer 4 defined by the inequalities

(9) 027». __;_ > 027\, +1 )

From now on, n satisfies (8), and ¢, 2 are given by (7), (9) respectively.

v

Lemma 2.
(10) 2 = max {8 M, 2%},
For, by (7) we have

ns2be= 200+ 2 2 b=
EY m== 2 b§2"‘+1
b<c)M e

(11) =22m4 Zl‘(zzo logs m - 1)2m+ 2" § n- Z‘ (22 logs m+ 1)21n+1_|_

1=m=A\
+ Z (220 logs m+1)2"™ (1/2)" ™' = = n+ (2% logs 2 + 1)2045,
m>A

The Lemma now follows from (8) and (11).
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It is convenient to state for further reference two inequalities involving
¢ and 4. We do not give the proofs, which are all by a division of the range

of summation as in the proof of Lemma 2.
Corollary. The following estimates hold:

(12) D hob < 28+0 Jogy 2,
1EB
-l szb N
13 e < 28080 [0 g Z,
(13) 1)6223(1 + o) < 0g
Lemma 3. Let o, @ be real numbers such that
14 Lgagl, D=,
2
Then
&4 2 2 2
(15) ‘lﬁg} = exp {—4 P?/9n? = 27",
For
|14 06?P = (14 0)*—20 sin® D/2
and
|sin @/2| = | D|/n.
Hence
id |2 2
%%%; éb—aé%?ilfl—4®W%ﬂ§ew{—MW&n%
Corollary 1. Suppose that
(16) 2% =0=02—2"Ya
Then
amn |F(O)| =2,
where F(0) is given by (4).
For
J— 1 _{_Qbelbo
FO| =
O Mbegbjézﬂf 1+o°

In each of the terms of the product we have

27“;i

2
by (9). Hence on applying Lemma 3 to each term, with
o=0" and @ =+ 27|b0/2x],

lzgze =0
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116 J. W. 8. Casscls
we have
| 17(0)| = 2=z|lbol2frllﬂ’

where the sum is over 6 €3, b = 2", The {ruth of (17) now follows from
Lemma 1 (i).

[or
N=m<4
we wrile
o L - Qbeibo)
a1 M@= I [LEger),

P pzsamtl
Corollary 2.
(19) |/2-1(0)| = exp {—2*+1 (log 2) %}
for all 0 in the range 0| =27

By Lemma 3 we have the estimate

; 4
|f7»—1(0)l = exp 02

b0)*t.
2 )
Lo poh

2

ah—

Since there are at least 2% logs (A—1) summands, by Lemma 1 (ii), the re-
quited estimate follows.

Corollary 3. Let

(20) 60— (logs 2 °® 2.
Then
oAz -
(1) [ 1F@)1d0 =2 (logs ™ exp (—2" (loga )"}
O
For
(22) |F(0)] = |fr-1(0)]

and Corollary 3 follows from Corollary 2 with a little calculation.

Lemma 4. Let o, D,y be real numbers such that

& o=t Falo—yizn
Then

1+0e?|| 1406 )
@9 '1+0 14+o =27 .
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On the representation of integers 117

Since
—osin @

1+0*+20cos @

4 ool toes
id log |1 +0e?|=

is monotone in |®D| = #x/2, it is easy to see that the left hand side of (26)
attains its maximum when @ = —y=n/16 for fixed o, when @, are
allowed to vary. Lemma 4 now follows from Lemma 3.

Corollary 1. Let N=m< 2 and let Oy, 0, be two numbers such that

(25) 2" =100—0| =27 .
Then
(26) |f;n(00)f;n(01)| = /71“10,

where f(0) is defined in (18).
For, by Lemma 1 (i),

rACYIACHIE I

oM. p=om+1
veEB

ll + gb et
| 140

1 _I__ Qb e’Lboo
14 o°

is the product of at least 2% logs m terms to each of which Lemma 4 applies.
Corollary 2. Let 3 be any interval of length

27) 13| =2""m

Then & can be divided into 3 interyals R, &, I each of length at most

27" n, so that?)

@8) £O)=-

m G€R,Q).

|

We may suppose that J is closed, so that |f,.(0)] for ¢ takes its

maximum at some 6o€3J. If | (60)] é%m“‘, there is nothing to prove. If

| f,n(00)|>%m‘4 we take for M the points of § for which |6—6| =27z

By corollary 1 we have

|/ (O)] = m%| £ (00)| = 4m ¢ = —‘11—/71*4

for €3, 0¢M; and the result follows.

1) We do not exclude the possibility that one of the intervals is empty.
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118 J. W. S, Cassels

Lemma 5. Let Y be any inferval of length || = 2™ %, Then

(29) [ 13-10)[™d0 = (logs AR,
RY .

We use the rearrangement of functions as cxplained in FARDY, LitTLi-
wooD and PoLya [5] Chapter X. If #(0) is any conlinuous positive function
defined for 0 €Y, then, just for this proof, we denote by «*(0) the symmetric

rearrangement of u(0); thal is the unique function defined for |0|§%|8|
by the following propcrtics:

(A) u«*(0) is continuous,

®B) u'(—0)=u"(©),

(© '(0) decreases for 0= 0= 3]

(D) for any number uo, the set of 6 in |0 g}?|£}| such that u*(0) > uo

has the same measure as the set of 6¢€J such that u(6) > uo.

If u(0),v(0) are any two positive continuous functions defined in J then it
is easy to see that

(30) [ u@yv©)a6 = [ w©@)ao0)
3

lol=-5 31

(cf. HARDY, LirTLEWOOD and POLYA [5], Theorem 378).
In particular, when & is as above and

1 _[_Qbeiﬂ
1+4¢

for some integer 0 with b = 2, it is obvious that

" (0) = u(0) (IGI_S_—;—ISI)-

1/2

u(0) = u,(0) = '

Since
Vs @ 2= L] (),
eB

oAl p=oh

repeated application of (30) gives
[laa@rzao= [ 1pa@pmdo= [ exp{—2(logs )60,

3 lol=2-*-1y -w<0< 0o

by Lemma 3, Corollary 2.
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On the representation of integers 119

Lemma 6. Lef m be any integer in N=m< A and let § be any in-
terval of length || = 2" "s. Then

SM@@@—flnﬁwWmewJ1“ IT (7).

MY A

When m==2—1, this is just Lemma 5. Otherwise we use backwards
induction on m. Let &, & M be the intervals given by Lemma 4, Corollary 4,
Then, in an obvious notation,

Sm (S) = Sm (R) —I“ Snz (8) —I“ Sm(m}) =
% m 28131 5] (R) + ';— /71_287;14.1 (8) —I— Sm+1 (S)}),

=

since |/ (0)[1? = %/71"2 in & € and |fx(6)|"*=1 in M. The intervals &, &, M
satisfy the condition of the Lemma with m--1 instead of m and the result
follows.

Corollary. Let N=m=2A—2 and let J" be the interval

2 A.’/’Cé 0 = 2~1n—17r
Then

(31) Su(¥") = (loga ) 24| TT (1+17)—1}.

M=y A

-1 m41

For §™ is the union of & and &™"', where &' is the interval

2—m—2ﬂ:< 0 é 2—m~1n
By Lemma 4, Corollary 1, we have
|fm(0)| =m<m?

for O¢ &', since £,(0)=0. The required estimate now follows by induc-
tion on applying Lemma 6 with m-1 for m to the interval £ instead of
3, and since

Sm ((\m) = Srn (C\'m H) _[‘ Sm (Rm H) = z+1 (C\'"H-I) "{— m -2 Sm (ﬁm H) .

Lemma 7. Let

(32) 0o = (logs ) 227" n.
Then
271 )
(33) | IF(6)|d6 <277 (logs 2)™.
Oy
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120 J. W. 8. Casscls

The integral in question is twice the inlegral over the range Ov= 0=,
We divide this info 2¥1'-- 1 subintervals, namely

K Ohs=0z=2",

g 2*'r=0=2""4x,

M 2Ma=0=(G+02V'ae (Q=j=2".
Lemma 3, Corollary 3 gives al once

(34) I = (loge 2) 27 exp {—2' (logz 4)'”} < 2% (loga 2) 7,
K

by (10).
In the inlerval & we have, by (4) and (18),

OIS I RIACIEN I RIAGOTS
N=peh N=p<h
Hence Lemma 6, Corollary with m— N gives

(35) | = (logs 2y P27 I (1+e*)—1} =277 (loga )™
.t N

Finally, by Lemma 3, Corollary 1, in the intervals 9t we have

F(a) é 2—21\’-—50
and so

(30) [FO)| =2 "iFO" =2 1 11,0
N=pe<l
Hence by Lemma 6 with m= N we have

(37) [ = g% (loge Z)—1l22—hh7 S[M]/'A a +H_2) = M N (logs Z)_I/g‘

SJIj
The truth of the Lemma now follows at once from (34), (35) and (37).
Lemma 8. Let

(38) 0o = (logs 2) **27" 7.
Then
[
(39) R [ F(6)e™ a0 > 27 (logs 2"
-8,
Write
1_!__ beib0
(40) vWFngjME
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Then
/// __Qb(l_@be1b9)b3
(0) - (1 _I__ 0bg’ﬂ)9)3

|0| = 00)

If now

one readily obtains the estimate
41) |0y (0)| = 60°0°%,
on considering separately the two cases

b=2M so 0b<%

and )
b< 2", so |00]=2m(loged)™ = n/4,

by Lemma 2. Hence, using TAYLOR’s theorem with remainder, we have

1+@”€“’") 1000 @OOP | _ i0s o,
]Og( 14¢° 140" +2(]_|_Qb)2 =0"[00P = 0" (b0,)*.

Summing over b ¢ and recollecting that ¢ was chosen so that

b
n== > be

(42)

ien 1400
we have
(43) |log {F(O)e "} +z6?| = 2 0" (b60)°,
»eEY
where
b20b
4 2re= > 0
“4) i b; (149"

The sums occurring here were estimated in Lemma 2, Corollary. In the
first place,

(45) 30" (b6o)° = 2" (log, )08 = 72" (logs 2)F < 27*
by Lemma 2. Further, by Lemma 2, Corollary and (44),
(46) 27 < 2240 |ogy =21y (say).
By (43), (45), (46) it follows that
3
47 % fF(e)e—wede =~ jexp (—16?)d0=— Jexp {—wotR}dO = ‘1’2,
-6, -6y -0,

since o6 > 1 by (38) and (46).

A9
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The truth of the Lemma now follows from (46) and (47).
We note now that Lemmas 7, 8 together show that

7T
R | F(0)ed0 > 0.
-7

This implies (3), and so the truth of the Theorcm, as was remarked in the
discussion that led up to (3).

3. Proof of Theorcem 11

Let ¢ be any irrational number with bounded partial quotients and let
#>0 be arbitrarily small. We consider first the set © of positive integers
i <do<eve
such that
La +e)

lde|| <d *

Lemma 9. There are numbers y, >0, y2 depending only on « and s,
such that

for all sufficiently large j.

We have
(Hm)
|@n—dp)e|=lldnel+de| <2d; *
This gives the left-hand inequality, since « has bounded partial quotients.
(See, for example, CAsseLs [3], Chapter I.)
Now let d; be given and let p'/q’, p”/q”, p”’[q¢"" be the three consecutive
best approximations to e« such that

’ —;4(1—8 1"
- q =4d, <q'<q".
1en

: (1+e)

q < qIII < d%
where ys depends only on «, and

14+8)

” ’” 7 7 1 - % ( e 1" " T
9" el =1q"e—p"|<p"' < d » 97 el=19"a—q |< d;

(1 H:)

Further, (¢"e—p”) and (¢”’e«—p’”") have opposite signs, so

(1+8)

min {{|(;+q") el ||(a'a+q”')“||}<—d N
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Herice at least one of the two numbers d;+q¢” and d;--q¢” lies in D pro-
vided that d; is large enough. This proves the right-hand inequality.

|

Corollary 1.
A1 —d;

(48) JIEQWZO
Corollary 2.
(49) 2, llde] < oe.
aeDd

Corollary 1 is immediate. To prove Corollary 2, we note that, by
Lemma 9, there are O(Z%jms)) elements d € D in 27/ <d = 2/, Hence the
contribution of the terms with 27/ < d = 2/+! to the sum in (49) is O (2‘%8).
Since 22-%]S< oo, the result follows.

J
We also consider the set & of integers >0 such that
|[tee|| < %8

Since « is irrational, the fractional parts of ne (n=1,2,3,...) are uhiformly
distributed, and hence

lim nT(n) =+

n->om

(see, for example, CAsseLs [3], Chapter IV).
Hence, and by Lemma 9, Corollary 2, there exists an mteger N such that .

(50) T(n)<en (for all n=N)
and

Z ||a'cc|| < —«8

aeD, d=N

Denote by € the set of elements ¢ of ® with c= N. If s is the sum of dis-
tinct elements of €, we have clearly

(61) s=N
and
1
Isell= > leall <5
ce@®
that is,
(52) SET.
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124 J. W, S. Cassels: On the represeniation of inlegers

The sct € has the properly (i) of the enunciation of Theorem II by
Lemma 9, Corollary 1, and il has property (iii) by (50), (51) and (52). It
remains only to show that € contains infinitely many elements in every
arithmetic progression, say in lu--v (/=0,1,2,...), wherc #>0,u:>0 are
fixed integers. That is, we must show that therc exist infinitcly many inte-
gers [ such that

lu4-v= N,

(53) (vl = Qa0

But now an old theorem of KtINTCHINE [6] stales that if 0 is irrational and
@ is any real number, then

(54) lim inf /|| 10 48| = 57~
>0

This theorem with 6 =ue, §—=wvea certainly implies the existence of infinitely
many solutions of (53). (For a short proof of a slightly stronger form of
KHINTCHINE’s theorem see CASSELS [2]. For the latest in this direction see
DESCOMBES [4].)

References

[1] B.]. Bircn, On a problem of Erdés, Proceedings Cambridge Phil. Soc., 55 (1959), 370—373.

[2] J. W. S. Cassews, The lattice properties of asymmetric hyperbolic regions. 1. On a the-
orem of Khintchine, Proceedings Cambridge Phil. Soc., 44 (1948), 1—1.

[3] J. W. S. CasseLs, An intfroduction to Diophantine approximation, Cambridge Tract N° 45
(Cambridge, 1957). .

[4] R. Descomses, Sur la répartition des sommets d’une ligne polygonale rtéguliére non
fermée, Annales Ecole Normale Supérieure, 73 (1956), 283—355,

[5] G. H. Haroy, J. E. LrrrLewoop and G. Povva, Inequalities (Cambridge, 1934).

[6] A. Kuintcuing, Neuer Beweis und Verallgemeinerung eines Hurwitzschen Satzes, Math.
Annalen, 111 (1935), 631—637.

[7] K. F. Rorn—QG. Szekeres, Some asymptotic formulae in the theory of partitions, Quarterly
J- Math., 5 (1954), 241—259.

TRINITY COLLEGE
CAMBRIDGE

(Received September 3, 1959)

All rights reserved @ Bolyai Institute, University of Szeged



